We consider a Mean Field Games model where the dynamics of the agents is subdiffusive. According to the optimal control interpretation of the problem, we get a system involving frac- tional time-derivatives for the Hamilton-Jacobi-Bellman and the Fokker-Planck equations. We discuss separately the well-posedness for each of the two equations and then we prove existence and uniqueness of the solution to the Mean Field Games system.

A time-fractional mean field game / Camilli, Fabio; DE MAIO, Raul. - In: ADVANCES IN DIFFERENTIAL EQUATIONS. - ISSN 1079-9389. - STAMPA. - 9/10:24(2019), pp. 531-554.

A time-fractional mean field game

Fabio Camilli;Raul De Maio
2019

Abstract

We consider a Mean Field Games model where the dynamics of the agents is subdiffusive. According to the optimal control interpretation of the problem, we get a system involving frac- tional time-derivatives for the Hamilton-Jacobi-Bellman and the Fokker-Planck equations. We discuss separately the well-posedness for each of the two equations and then we prove existence and uniqueness of the solution to the Mean Field Games system.
2019
subdiffusion, fractional derivate, fractional Fokker Planck equation, fractional Hamilton Jacobi Bellman equation, Mean Field Games
01 Pubblicazione su rivista::01a Articolo in rivista
A time-fractional mean field game / Camilli, Fabio; DE MAIO, Raul. - In: ADVANCES IN DIFFERENTIAL EQUATIONS. - ISSN 1079-9389. - STAMPA. - 9/10:24(2019), pp. 531-554.
File allegati a questo prodotto
File Dimensione Formato  
Camilli_Atimefractionalmean_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 375.24 kB
Formato Adobe PDF
375.24 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1069095
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact